II B.Tech - II Semester – Regular Examinations – May 2016

ELECTROMAGNETIC FIELDS AND WAVES (ELECTRONICS AND COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) What are the ranges of cylindrical and spherical coordinates?
- b) Write the significance of divergence and curl.
- c) What are the features of Electric field intensity?
- d) Determine E at origin due to uniform line charge distribution with $\rho_1 = 3.3nC/m$ located at x = 3m, y = 4m.
- e) State Gauss law for electrostatic fields.
- f) Write the expression for magnetic field intensity due to finite filamentary conductor carrying current 'I' in positive Z direction.
- g) At a point P (x,y,z) the components A_x , A_y , A_z of vector magnetic potential A are given by $A_x = 4x + 3y + 2z$, $A_y = 5x + 6y + 3z$, $A_z = 2x + 3y + 5z$. Determine magnitude and direction of B at point A.
- h) State Faraday law of Electromagnetic induction.

- i) Write boundary conditions for Dielectric to Dielectric interface in case of electric and magnetic fields.
- j) In free space Let $E = 50 \cos(10^8 t \beta x) \hat{a}_y V/m$, Assume β is positive real constant. Find the direction of propagation and β .
- k) In High loss medium, the EM wave is travelling in particular medium attains 2π rad of phase shift over 1m distance. What is skin depth?

PART – B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

- 2.
- a) Derive the relationship between unit vectors of Cartesian coordinates and cylindrical coordinates . 6 M
- b) Prove the divergence of curl of any vector is zero and curl of gradient of any scalar is zero . 4 M
- c) Determine gradient and laplacian of any scalar function $v = xy^2 + x^2yz + xyz^2$ 6 M
- 3.
- a) Derive the expression for Electric field intensity due to infinite line charge of density $\rho_l C/m$. 8 M

- b) A line charge density of 24 nC/m is located in free space on the line y=1, z=2
 - (i) Find E at P(6,-1,3).
 - (ii) What point charge Q_A should be located at Q(-3,4,1) to cause E_y to be zero at P? 8 M

4.

- a) Find the H at a point P(1.5,2,3) caused by a current of 24 A in â_z direction on Z axis extending from
 (i) Z = 0 to Z = 6
 (ii) Z = 6 to Z = ∞
 - (iii) $Z = -\infty$ to $Z = \infty$ 8 M
- b) In the Cylindrical region $0 < \rho < 0.5m$, the current density is J = 4.5 e^{-2 ρ} \hat{a}_z A/m² and 0 Elsewhere. Use amperes law to find H. 8 M

5.

- a) What is inconsistency in Amperes law? How Maxwell modified it?6 M
- b) A circular loop of 10cm radius is located in the x-y plane in a field given by $B = 0.5 (3 \hat{a}_y + \hat{a}_z) \cos(377t)$ tesla. Find the EMF induced in the loop. 4 M

- c) The interface defined y = 0 separates two media with $\epsilon_1 = 2 \epsilon_0$ and $\epsilon_2 = 3\epsilon_0$. Assume that interface is charge free, given that $E_1 = (4\hat{a}_x + 5\hat{a}_y + 6\hat{a}_z)$ V/m. Find D₁, E_2,D_2 . 6 M
- 6.
- a) Derive the Expression for Attenuation constant and phase constant from Propagation constant.6 M
- b) Describe the Wave propagation in perfect dielectric, good dielectric, good Conducting medium. 10 M