II B.Tech - II Semester - Regular Examinations - May 2016

ELECTROMAGNETIC FIELDS AND WAVES (ELECTRONICS AND COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \mathrm{x} 2=22 \mathrm{M}$ 1.
a) What are the ranges of cylindrical and spherical coordinates?
b) Write the significance of divergence and curl.
c) What are the features of Electric field intensity?
d) Determine E at origin due to uniform line charge distribution with $\rho_{1}=3.3 \mathrm{nC} / \mathrm{m}$ located at $\mathrm{x}=3 \mathrm{~m}$, $y=4 m$.
e) State Gauss law for electrostatic fields.
f) Write the expression for magnetic field intensity due to finite filamentary conductor carrying current ' I ' in positive Z direction.
g) At a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ the components $\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{z}}$ of vector magnetic potential A are given by $A_{x}=4 x+3 y+2 z$, $A_{y}=5 x+6 y+3 z, A_{z}=2 x+3 y+5 z$. Determine magnitude and direction of B at point A.
h) State Faraday law of Electromagnetic induction.
i) Write boundary conditions for Dielectric to Dielectric interface in case of electric and magnetic fields.
j) In free space Let $E=50 \cos \left(10^{8} t-\beta x\right) \hat{a}_{y} \mathrm{~V} / \mathrm{m}$, Assume β is positive real constant. Find the direction of propagation and β.
k) In High loss medium, the EM wave is travelling in particular medium attains 2π rad of phase shift over 1 m distance. What is skin depth?
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.

a) Derive the relationship between unit vectors of Cartesian coordinates and cylindrical coordinates . 6 M
b) Prove the divergence of curl of any vector is zero and curl of gradient of any scalar is zero .
c) Determine gradient and laplacian of any scalar function $v=x y^{2}+x^{2} y z+x y z^{2}$
3.
a) Derive the expression for Electric field intensity due to infinite line charge of density $\rho_{1} \mathrm{C} / \mathrm{m}$. 8 M
b) A line charge density of $24 \mathrm{nC} / \mathrm{m}$ is located in free space on the line $\mathrm{y}=1, \mathrm{z}=2$
(i) Find E at $\mathrm{P}(6,-1,3)$.
(ii) What point charge Q_{A} should be located at $\mathrm{Q}(-3,4,1)$ to cause E_{y} to be zero at P ?

8 M
4.
a) Find the H at a point $\mathrm{P}(1.5,2,3)$ caused by a current of 24 A in \hat{a}_{z} direction on $Z-$ axis extending from
(i) $\mathrm{Z}=0$ to $\mathrm{Z}=6$
(ii) $\mathrm{Z}=6$ to $\mathrm{Z}=\infty$
(iii) $\mathrm{Z}=-\infty$ to $\mathrm{Z}=\infty$

8 M
b) In the Cylindrical region $0<\rho<0.5 \mathrm{~m}$, the current density is $\mathrm{J}=4.5 \mathrm{e}^{-2 \rho} \hat{a}_{z} \mathrm{~A} / \mathrm{m}^{2}$ and 0 Elsewhere. Use amperes law to find H .

8 M
5.
a) What is inconsistency in Amperes law? How Maxwell modified it?
b) A circular loop of 10 cm radius is located in the $\mathrm{x}-\mathrm{y}$ plane in a field given by $\mathrm{B}=0.5\left(3 \hat{a}_{y}+\hat{a}_{z}\right) \cos (377 \mathrm{t})$ tesla. Find the EMF induced in the loop.
c) The interface defined $y=0$ separates two media with $\epsilon_{1}=2 \epsilon_{0}$ and $\epsilon_{2}=3 \epsilon_{0}$. Assume that interface is charge free, given that $\mathrm{E}_{1}=\left(4 \hat{a}_{x}+5 \hat{a}_{y}+6 \hat{a}_{z}\right) \mathrm{V} / \mathrm{m}$. Find D_{1}, $\mathrm{E}_{2}, \mathrm{D}_{2}$.

6 M
6.
a) Derive the Expression for Attenuation constant and phase constant from Propagation constant.
b) Describe the Wave propagation in perfect dielectric, good dielectric, good Conducting medium.

10 M

